
www.manaraa.com

OBJECT-ORIENTED APPROACH TO INTERCONNECTING
TRUSTED DATABASE MANAGEMENT SYSTEMS

Bhavani Thuraisingham and Harvey Rubinovitz

The MITRE Corporation, Bedford, MA 01730

A B S T R A C T

This position paper describes an object-oriented approach to connecting trusted
database management systems. In particular, an object model of the heterogeneous
environment, the operation of the system, and a possible approach to simulating the
environment using object-oriented technology are discussed.

1. INTRODUCTION

Within many organizations there are a number of computerized databases scattered
across several sites. Efficient access to the information contained in these databases as well as
sharing it has become an urgent need. As a result, the increasing number of heterogeneous
database systems need to be interconnected. For many applications of heterogeneous database
systems, secure interoperabifity is essential. Furthermore, for military appficadons, it is also
important that such systems support multilevel user/data handling capability.

Recently, there have been some developments in homogeneous trusted distributed
database management systems (see, for example, [THUR90, RUBI92a, RUBI92b]) and
research is now beginning on interconnecting trusted database management systems in a
heterogeneous and autonomous environment (see for example [THUR91 a, THUR91 b]).

In this paper we first review the security issues involved in interconnecting
heterogeneous database systems, which we presented at the 1991 ACM Workshop on Data
Management Systems, and then describe our research on a specific topic. In particular, we
describe the use of object-oriented approach to interconnecting trusted database management
systems. The organization of this paper is as follows. In section 2, we identify issues on
interconnecting trusted database systems. In section 3, we describe an object-oriented model
for interconnection. Issues on simulating the environment using the object-oriented simulation
methodology is discussed in section 4. In our previous work on trusted distributed database
management system, we have found that simulation studies have been cost effective.
Therefore, we feel that simulation studies would help toward understanding the environment.
Future considerations are given in section 5.

2. ISSUES IN I NTERCONNECTION

In this section we discuss the issues involved in interconnecting heterogeneous
database systems and then discuss the security impact for each issue. We will also discuss
some of the additional security concerns in interconnecting heterogeneous systems.

Yqo0

www.manaraa.com

(i) Semantic Heterogeneity and Schema Integration: Not all of the databases in a
heterogeneous architecture are represented by the same data model. Therefore, the different
conceptual schemas have to be integrated. In a multilevel environment, the constructs of one
multilevel data model have to be transformed into those of another. During the translation
process it should be ensured that a user who does not have access to a particular entity with
respect to one data model must not have access to the same entity with respect to a different
data model.

(ii) Role of object-oriented approach: Two aspects of the object-oriented approach are
being investigated for a heterogeneous architecture. One is to develop a generic data model
using this approach. The idea here is for the users to have a generic view of the entire system.
The second use of the object-oriented approach is the design of the software components of the
heterogeneous database system. With respect to multilevel security, rules for the secure
interaction of the objects at different security levels need to be developed.

(iii) Transaction processing: Work is being directed toward integrating the various
transaction processing mechanisms. At the same time transaction processing algorithms are
being adapted to handle multilevel security. However, integration of these adapted algorithms
to function in a heterogeneous environment need to be investigated.

(iv) Query processing and optimization: One of the research areas here is to develop a
global cost model for query optimization. In a multilevel environment, the individual cost
models will depend to a great extent on the security poficy enforced and the storage mechanism
used. The global cost model would then depend on the global security policy that is enforced.

(v) Standardization efforts: The current standardization efforts include work on Remote
Data Access, SQL, Transaction Processing, Remote Procedure Call, and Appfication Program
Interface. Security impact on these efforts need to be investigated.

(vi) Other security issues: In addition to the security impact on the various issues
identified for heterogeneous database systems, there are some additional security concerns.
These include the following:

(a) Different security poficies: Each DBMS could enforce its own security policy for
mandatory, as well as discretionary security. In addition, different authentication and
integrity mechanisms may be used. The different policies have to be integrated in order
to provide a global security poficy.

(b) Different granularity of classification: Even if the relational data model is utilized at
all nodes, the granularity of classification could be different. For example, one system
could enforce classification at the tuple level while the other system could enforce
classification at the element level. Such differences need to be handled at the global
level.

(c) Different classifications of the same entity: An entity could be classified at the
Secret level at one node and yet be classified at the TopSecret level at the second node.
If this is the case, then the global policy should resolve such inconsistencies.

3

www.manaraa.com

(d) Different semantics of classification levels: A classification level at one node could
mean something entirely different at another node. Again the global security policy
should resolve such inconsistencies.

(e) Different accreditation ranges: One node could handle the range from Unclassified
to Secret while another node could handle the range Confidential to TopSecret. If a
TopSecret user needs to access the Unclassified information handled by the first node,
then it should be ensured that information from the TopSeecret user is not transmitted
cove~y into the node handling the Unclassified data.

If nodes are autonomous, where they may choose to join or leave a federation when
they want to, then there are additional problems that must be considered. For example, in an
autonomous environment, priority is usually given to requests of local users over requests of
federated users. Autonomy may have conflicts with security if these users are at different
security levels. A more detailed discussion of theses conflicts is given in [THUR91a].

Much research needs to be done if solutions are to be provided for the secure
interoperability of heterogeneous database systems. The problem becomes even more complex
if the heterogeneity is with respect to more than one issue that we have identified. For
example, the various systems could enforce not only different security policies, but also utilize
different multilevel data models. We have conducted a preliminary investigation of some of
these issues. For example, schema translation techniques are addressed in [THUR92]. Query
processing and transaction management under a limited heterogeneity, where nodes handle
different accreditation ranges, are discussed in [THUR91 b]. In this paper we address issues
on utilizing the object-oriented approach to interconnecting different trusted DBMSs. Our
approach is discussed in section 3.

3. AN OBJECT MODEL OF THE H E T E R O G E N E O U S E N V I R O N M E N T

In this section we describe the essential points of an object model which is used to
model the environment under consideration. 1 In our model every entity is an object. That is an
object could be a federation, a node, a database, or a DBMS. We group collections of objects
with similar properties into classes. The classes form class hierarchies. We support
inheritance and encapsulation. The properties of a class are specified by instance variables.

We will illustrate the environment with examples. Figure 1 represents the environment
partially. The classes include FEDERATION and NODE. The instances of the FEDERATION
class are the various federations. Each federation has the following instance variables: the
federation-ID, the collection of nodes which form the federation, the federated schema, the
federated security policy, and an administrator or group of administrators (if there is one).
NODE class has nodes as its instances. Each node has the following instance variables: the
node ID, node-name, federations (the federations to which the node belongs), the accreditation
range (i.e., the range of security levels processed by the node), the database system (this
includes the local policy, the schema, the DBMS, and the database), the administrator,

For a discussion on object-oriented dam models we refer to [BANE87].

4

www.manaraa.com

Class: FEDERATION

Instance Variables:
ID: Integer
Name: String
Node-list: List(NODE)
Schema: SCHEMA
Policy: POLICY
Administrator: PERSON

Methods: - - -

Class: NODE

Instance Variables:
113: Integer
Name: String
Federation: List(FEDERATION
Accreditation range:

Range(LABEL)

Methods: - - -

Figure 1. Sample Classes

local users, and global users. Administrator and users are instances of the PERSON class with
instance variables which include Person-ID, Name, Type of user, and Nodes.

Note that each node has a database system as an instance variable. This is an object and
represents the local database system. 'INs system consists of the multilevel database, the local
trusted database management system, the local schema, and the local security policy. That is
the database system object is a composite object. The specification of the component objects
are yet to be def'med. Note also that the local trusted database management systems may be
relational systems or object-oriented systems. At a higher level of abstraction, we do not
distinguish between these systems. That is, the interface to the database system object is
uniform. The actual methods which implement the functions may be different for the various
types of data models utilized.

We discuss the operation of the system with an example. This example is illustrated in
figure 2. Suppose node A wants to join the federation F. Node A sends a message to the class
FEDERATION with federation F as a parameter (msg 1 in figure 2). Node A may also give
some other information as to what information it needs from others and the information it is
willing to share. When federation F gets the message, the corresponding method gets
executed. The federated policy may be examined to see if A can join the federation (msg 2 in
figure 2 where it is assumed that the administrator C maintains the federated policy). It may
send messages to the nodes already part of the federation to see if all of these nodes are willing
for A to join the federation (msg 3 and msg 4 in figure 2). If all checks are satisfied, F sends a
message to node A to join the federation and it includes A as part of the list of nodes which
belong to it. That is, the value of the instance variable of F which specifies the nodes gets
updated. Node A in turn updates the value of its instance variable for the federation.

As another example, suppose a user of node A wishes to access some data at
node B. Let us assume that the request is via a federation. Then node A sends a message to
the federation which in turn sends a message to node B. The federation object may perform
certain security checks. Node B may check to see that this user is a valid federated user. It
then performs some security checks and then sends a message to access the data via the
database system instance variable. Note that if nodes A and B handle different

5

www.manaraa.com

Federations

<S)
Nodes

C7- C)
<S) O

Users (includes administrators

C)
Figure 2. A Scenario

accreditation ranges then processing is more complex. For example, if the requesting user is
TopSecret and Node B does not handle the TopSecret level, then the request has to be
transmitted through a trusted process which must ensure that the request does not contain any
potential TopSecret data. Further investigation is necessary before it is determined whether this
trusted process is part of a method associated with the NODE class or it is part of the method
associated with the FEDERATION class.

In this section we have stated just the essential points of the model and its operation. In
reality we envisage that the environment will be rather complex. Therefore, we need to first
develop the requirements for the environment (either hypothetical or possibly real) and then
define the various classes and objects. Next, we need to develop techniques for all possible
interactions between the various entities. Finally we need to show that the system is secure.

Before developing such a heterogeneous system it would be useful to simulate the
environment to determine the performance of the various operations. Our previous work in
trusted distributed database management systems has shown that simulation can be a valuable
and cost effective tool [RUBI92b]. In section 4 we discuss issues on simulation. What is
interesting about our approach is that we could use the object-oriented methodology for
simulating our environment which is represented using an object-oriented model.

6

www.manaraa.com

4. OBJECT-ORIENTED SIMULATION OF THE ENVIRONMENT

In this section we discuss how the environment described in section 3 could be
simulated using an object-oriented simulation package. 2

Before building an operational heterogeneous trusted distributed DBMS, it is essential
that the system be simulated. This is because while prototyping has shown to be a valuable
tool, due to resource constraints, it may be impossible for the prototype to depict the real world
operational scenario. For example, the system may consist of thousands of physical nodes
while the maximum number of nodes handled by prototypes are usually much less. Therefore,
it is essential that simulation studies be carried out particularly for scenarios which cannot be
handled by prototypes. Simulation models can give insights and quantitative results when a
complete analytical approach would be impossible. Simulation has been considered a
significant cost effective tool for modeling the behavior of distributed systems [RUBI89].

A trend in software development is that of object-oriented programming. Object-
oriented programming techniques seem to be a natural match with simulation. Transferring a
real world problem to a computer representation can be done with less effort and also allows
for multiple levels of abstraction, incremental program development, and software reuse.

Using object-oriented techniques, a problem may be decomposed into a set of objects,
where each object represents one object of the simulation model. An object is an encapsulation
of data and code. The data refers to the current status of the object and the code describes the
actions of the object.

The following code segments show how the examples presented in section 3 may be
simulated. The code segments are patterned after MODSIM [MULL89] but due to limited
space only the pseudo code is presented.

federation_object= OBJECT
fed_id:
set of .nodes:
fed_schema:
fed_security-policy:
administrators:

INTEGER;
LIST;
SCHEMA;
POLICY;
LIST;

TELL METHOD join(IN federation: federation);
TELL METHOD remove_fed(IN federation: federation);

END OBJECT { federation_object }

Note that we have not yet carried out the simulation. We only discuss the design issues here.

www.manaraa.com

OBJECT federation_object;
TELL METHOD join(IN federation: federation);
VAR

allowed: boolean;
BEGIN
allowed:= TRUE;
FOR EACH node IN set of nodes
BEGIN

allowed:= send message asking ff current node may join }
END { for }
IF allowed BEGIN
add node to membership list
return status ok

ELSE
return status false

END METHOD;
END OBJECT;

node_object= OBJECT
node_id: INTEGER:
node_name: STRING;
federation: LIST of federation_object;
accreditation_range: LIST;
db_policy: POLICY;
db_schema: SCHEMA;
db: DB;
database: DATA;
administrators: PERSON;
local_users: PERSON;
global_users: PERSON;

TELL METHOD valid_user(IN user_id: INTEGER);

END OBJECT { node_object);

OBJECT node_object;
TELL METHOD valid_user(IN user_id: INTEGER);
VAR valid_user:
BEGIN

valid_user:= check if user is a valid user of the federation checking with
accreditation ranges;

return valid_user;
END METHOD;

END OBJECT;

8

www.manaraa.com

person_object= OBJECT
person_id:
n a m e :

type_of_user:
nodes:

END OBJECT { person }

INTEGER;
STRING;
USER;
LIST of NODES;

4. SUMMARY AND FUTURE CONSIDERATIONS

In this paper we first provided an overview of interconnecting trusted database
management systems and described an object-oriented model of the heterogeneous
environment. Next we discussed issues in utilizing object-oriented simulation methodology for
simulating such an environment.

Much remains to be done on this topic. First of all, we need to enhance the model that
we have proposed. We have specified only the essential constructs of the model. Issues on
handling autonomy and heterogeneity need to be investigated further and appropriate constructs
need to be incorporated into the model. The object-oriented simulation methodology discussed
here needs to be adjusted to fit the model. Simulation experiments need to be carried out for
different topologies as well as for other parameters. Finally, the detailed design and
implementation of the system needs to be carried out.

The recent trends in object-oriented approach to interconnecting heterogeneous database
systems show much promise (see the discussion in [SHET90]). We believe that such a
methodology would be useful for interconnecting trusted database management systems also.

ACKNOWLEDGEMENT: We thank Rae Burns and Arnon Rosenthal for discussions
which contributed to this paper.

REFERENCES

[BANE87] [BANE87] Bane~jee, J. et al., January 1987, "Data Model Issues for Object-oriented
Applications," ACM Transactions on Office Information Systems, Vol. 5, #1.

[MULL89] Mullarney, A. et al., MODSIM: a Language for Object-Oriented Simulation, CACI,
La JoUa, CA.

[RUBI89] Rubinovitz, H., 1989, A Simulation Language for Distributed Databases, Ph.D. Thesis,
Department of Computer Science and Engineering, University of Connecticut, Storrs.

[RUBI92a] Rubinovitz, H. and B. Thuraisingham, "Design and Implementation of a Query
Processor for a Trusted Distributed Database Management System, "To appear in the Journal
of Systems and Software.

www.manaraa.com

[RUBI92b] Rubinovitz, H. and B. Thuraisingham, June 1992, Simulation of Query
Processing and Concurrency Control, Algorithms for a Trusted Distributed Database
Management System, MITRE Technical Report, MTR 92B0000077 (a version also published
in the proceedings of the 1991 and 1992 Computer Simulation Conferences).

[SHET90] Sheth, A., and J. Larson, September 1990, "Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases," ACM Computing
Surveys, Vol. 22, #3.

[THUR90] Thuraisingham, B., July 1990, Multilevel Security Issues for Distributed Database
Management Systems, Technical Report, MTP 291, The MITRE Corporation (a version also
published in Computers and Security Journal, 1991).

[THUR91 a] Thuraisingham, B., November 1991, Security Issues for FedErated Database
Systems to Manage Distributed, Heterogeneous, and Autonomous Multilevel Databases,
Technical Report M91-78, The MITRE Corporation.

[THUR91 b] Thuraisingham, B., and H. Rubinovitz, December 1991, Design and
Implementation Enhancements of the Prototype Secure Distributed Query Processor, Technical
Report M91-86, The MITRE Corporation (a version to appear in Computers and Security
Journal).

[THUR92] Thuraisingham, B., 1992, "Schema Translation in Multilevel Heterogeneous
Database Systems," to appear in Database Programming and Design.

10

